740 research outputs found

    Excitonic lasing in semiconductor quantum wires

    Full text link
    Direct experimental evidences for excitonic lasing is obtained in optically pumped V-groove quantum wire structures. We demonstrate that laser emission at a temperature of 10 K arises from a population inversion of localized excitons within the inhomogenously-broadened luminescence line. At the lasing threshold, we estimate a maximum exciton density of about 1.8 105cm-1.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    An alternate model for magnetization plateaus in the molecular magnet V_15

    Get PDF
    Starting from an antiferromagnetic Heisenberg Hamiltonian for the fifteen spin-1/2 ions in V_15, we construct an effective spin Hamiltonian involving eight low-lying states (spin-1/2 and spin-3/2) coupled to a phonon bath. We numerically solve the time-dependent Schrodinger equation of this system, and obtain the magnetization as a function of temperature in a time-dependent magnetic field. The magnetization exhibits unusual patterns of hysteresis and plateaus as the field sweep rate and temperature are varied. The observed plateaus are not due to quantum tunneling but are a result of thermal averaging. Our results are in good agreement with recent experimental observations.Comment: Revtex, 4 pages, 5 eps figure

    String-inspired Teleparallel Cosmology

    Full text link
    The present paper represents an attempt for a very generic string inspired theory of gravitation, based on a stringy action in the teleparallel gravity which includes a specific functional which depends on the scalar field and its kinetic energy, as well as the torsion and boundary terms, embedding also possible effects from the teleparallel Gauss--Bonnet invariants. We focus our study on FLRW cosmology. After we deduce the cosmological equations for the associated generic theory of gravitation, we focus on string inspired couplings which are studied by considering different analytical techniques. The first analytical technique is based on the linear stability theory, by introducing proper dimensionless variables which enables us to study the structure of the phase space and the associated physical effects. In this case, we have obtained different cosmological solutions which correspond to matter and dark energy dominated solutions, achieving a possible transition between matter and dark energy dominated epochs. For each type of cosmological solutions, we have discussed the corresponding physical features, attaining viable constraints for the coupling constants due to dynamical effects. The dynamical study of the physical features included also a numerical analysis by fine--tuning the initial conditions deep into the matter era, obtaining possible trajectories for the effective equation of state for specific coupling functions.Comment: 18 pages. Matches published version in NP

    Structural relaxation of E' gamma centers in amorphous silica

    Full text link
    We report experimental evidence of the existence of two variants of the E' gamma centers induced in silica by gamma rays at room temperature. The two variants are distinguishable by the fine features of their line shapes in paramagnetic resonance spectra. These features suggest that the two E' gamma differ for their topology. We find a thermally induced interconversion between the centers with an activation energy of about 34 meV. Hints are also found for the existence of a structural configuration of minimum energy and of a metastable state.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let

    Properties of low-lying states in some high-nuclearity Mn, Fe and V clusters: Exact studies of Heisenberg models

    Full text link
    Using an efficient numerical scheme that exploits spatial symmetries and spin parity, we have obtained the exact low-lying eigenstates of exchange Hamiltonians for the high nuclearity spin clusters, Mn_{12}, Fe_8 and V_{15}. The largest calculation involves the Mn_{12} cluster which spans a Fock space of a hundred million. Our results show that the earlier estimates of the exchange constants need to be revised for the Mn_{12} cluster to explain the level ordering of low-lying eigenstates. In the case of the Fe_8 cluster, correct level ordering can be obtained which is consistent with the exchange constants for the already known clusters with butterfly structure. In the V_{15} cluster, we obtain an effective Hamiltonian that reproduces exactly, the eight low-lying eigenvalues of the full Hamiltonian.Comment: Revtex, 12 pages, 16 eps figures; this is the final published versio
    • …
    corecore